

Mathematical Calculations Progression.

Regrouping to make 10; using ten frames and Children to draw the ten frame and counters/cubes. Children to develop an understanding counters/cubes or using Numicon. of equality e.g. 6 + 5 $6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$ TO + O using base 10. Continue to develop understanding Children to represent the base 10 e.g. lines for tens and 41+8 of partitioning and place value. dot/crosses for ones. 1 + 8 = 940 + 9 = 4941+8 10s 1111 TO + TO using base 10. Continue to develop Chidlren to represent the base 10 in a place value chart. Looking for ways to make 10. understanding of partitioning and place value. 105 15 36 + 25= 30 + 20 = 50 36 + 255 + 5 = 1010s 1s 111 50 + 10 + 1 = 6136 Formal method: 6

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.

Chidren to represent the counters in a place value chart, circling when they make an exchange.

243

+368 611

Conceptual variation; different ways to ask children to solve 21 + 34

	?
21	34

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

$$21 + 34 = 55$$
. Prove it

21

+34

21+34=

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:

10s	1s	
00	0	
000	?	
?	5	

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 - 3 = 1	Ø Ø Ø O	4 3 ?
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10	12345678910	0 1 2 3 4 5 6 7 8 9 10
		1112

Conceptual variation; different ways to ask children to solve 391 - 186

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Concrete Pictorial	
Repeated grouping/repeated addition 3×4 $4 + 4 + 4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	Abstract 3×4=12 4+4+4=12
Number lines to show repeated groups-3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$
Cuisenaire rods can be used too.		0 4 8 12

Formal column method with place value counters. 6 x 23

Children to represent the counters/base 10, pictorially e.g. the image below.

1005	10s	15
	000	000
Q	0000	000
1	3	8

Formal written method

$$6 \times 23 =$$

23

1 1

When children start to multiply $3d \times 3d$ and $4d \times 2d$ etc., they should be confident with the abstract:

To get 744 children have solved 6×124 . To get 2480 they have solved 20×124 .

Conceptual variation; different ways to ask children to solve 6 × 23

23 23 23 23 23 23

?

Mai had to swim 23 lengths, 6 times a week.

How many lengths did she swim in one week?

With the counters, prove that $6 \times 23 = 138$

Find the product of 6 and 23

 $6 \times 23 =$

$$=6 \times 23$$

6 23

× 23 × 6

What is the calculation? What is the product?

100s	10s	1s
	00000	000
	000	000

Calculation policy: Division

Key language: share, group, divide, divided by, half.

 $13 \div 4$

Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.

There are 3 whole squares, with 1 left over.

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.

13 ÷ 4 - 3 remainder 1

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.

'3 groups of 4, with 1 left over'

Sharing using place value counters.

 $42 \div 3 = 14$

Children to represent the place value counters pictorially.

Children to be able to make sense of the place value counters and write calculations to show the process.

$$42 + 3$$

$$42 = 30 + 12$$

$$30 + 3 = 10$$

$$12 + 3 = 4$$

$$10 + 4 = 14$$

Short division using place value counters to group. 615 ÷ 5

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

Long division using place value counters 2544 ÷ 12

1000s	100s	10s	1s	Ι.
•	0000	0000	0000	1
1000s	100s	10s	1s	
	0000	8886	0000	

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

1000s	100s	10s	1s
	0000	0000 0000 0000	0000
	9999	00	

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

000	20	2222
26 00	50	8888
0		8888
	8	00

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.

12 2544
24
24
24

Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

615 + 5 =

= 615 ÷ 5

What is the calculation? What is the answer?

100s	10s	1s
000	00000	00000 00000 00000